PSACNN: Pulse sequence adaptive fast whole brain segmentation
نویسندگان
چکیده
منابع مشابه
Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling
Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate automated segmentation of anatomical structures. A desirable feature for such segmentation methods is to be robust against changes in acquisition platform and imaging protocol. In this paper we validate the performance of a segmentation algorithm designed to meet these requirements, building upon gene...
متن کاملFast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models
In this paper we propose a method for whole brain parcellation using the type of generative parametric models typically used in tissue classification. Compared to the non-parametric, multi-atlas segmentation techniques that have become popular in recent years, our method obtains state-of-the-art segmentation performance in both cortical and subcortical structures, while retaining all the benefi...
متن کاملImage segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging
We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and a...
متن کاملRobust whole-brain segmentation: Application to traumatic brain injury
We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adap...
متن کاملAccurate Whole-Brain Segmentation for Alzheimer's Disease Combining an Adaptive Statistical Atlas and Multi-atlas
Accurate segmentation of whole brain MR images including the cortex, white matter and subcortical structures is challenging due to inter-subject variability and the complex geometry of brain anatomy. However a precise solution would enable accurate, objective measurement of structure volumes for disease quantification. Our contribution is three-fold. First we construct an adaptive statistical a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2019
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2019.05.033